h无码在线观看,夜色色综合网,日韩AV免费久久,蜜臀久久综合视频

Language:CHINESESENGLISH

Home > News > Foshan Steel: Steel construction door optimal planning methods and procedures
CONTACT US
  • Address:Pingtang Industrial District, Shipeng Village, Shishan Town, Nanhai District, Foshan City,
  • Phone:0757-81002668/0757-63323396
  • Fax:0757-81196682
  • Contact:Ben Zheng/13826981293 Kerry Lu/13751224830
  • E-mail:sbs@sbsprefabhouse.com
  • URL:http://linbaoquan.cn

Foshan Steel: Steel construction door optimal planning methods and procedures

Time:[2014-12-10]  Hits:5760

Foshan Steel: Steel construction door optimal planning methods and procedures

     Lightweight steel door frame structure with low cost, light weight, easy installation, short construction period, etc., so the rapid development in recent years, in industrial plants has been more widely used. However, in practice in project planning, especially the steel rod structure is constructed of steel portal frame variable cross-sectional dimension need to go through multiple spreadsheets in order to determine, together with the experience of the current planners planning such a structure is not rich, so the plan is not efficient , the rod cross-sectional dimension of choice is also quite reasonable, simple structure resulting in all the various stress uneven bars, not only economic indicators is not ideal, and safety of the entire structure is not high, even some projects will be too much stress the individual rods planning exceed the material strength. Even stress after plastic deformation of steel construction material considerations redistribution, it is still possible to make the whole structure of the existence of certain security risks.
     When optimizing policy making steel gantry structure plan, should be under the premise of ensuring safety construction, so that the amount of steel structure of most provinces, the cost to a minimum. This is what we used to optimize the principle of optimal planning method. In a useful planning, the door frame steel structure of steel consumption and cost structure in turn resolution cross-sectional dimension of the rod, the. Therefore, our optimization approach can be directly reduced to how to select the economically reasonable cross-sectional dimension, so that it meet the strength, stiffness and stability needs of the premise, the minimum cross-sectional area.
     Optimization methods and optimization of steel truss structure similar to the mast {TodayHot} steel structure optimization method also uses the asymptotic full stress method, which bars the door frame steel structure after several computational analysis to select amend its cross-sectional dimension, it or as close as possible to achieve the full stress state, cross-sectional dimension of the rod until the entire door frame steel structure without amendments so far, so that the door frame steel structure of the minimum amount of steel in order to achieve the lowest cost optimization approach. Member cross-sectional dimension of the amendment, which is the cross-sectional dimension of the optimization, the method is chosen seeks its cross-sectional dimension in the plane, the two directions of the plane of maximum flexural resistance torque, while its cross-sectional area of the smallest, namely under external loads, Select the cross-sectional dimension of both to be able to meet the strength, stability, strength of demand planning checking the component materials, but also to make the most amount of material province. Specific optimization method is omitted here.
     Steel door frame structure optimization analysis based optimization method used steps and constraints, optimization analysis step gantry steel structure is as follows: Step 1: Determine the door architecture made an initial cross-sectional dimension members, the software is generally made on the basis of cross-gate architecture OK, but also by the planning staff to determine; the second step: making door architecture mechanical analysis using finite element variable cross-section rods various operating conditions, load combinations, strength and stability checking; third step: According to the practice of loading effect, each kinds constraints, using full stress-section optimization methods to re-optimize the selection gate structure made each rod cross-sectional dimension; more than second and third step can be repeated cycles, each cycle is complete optimization options, until the selected cross-sectional dimension of the a cross-sectional dimension entirely consistent so far. Step four: Checking door architecture made beams, columns, and each point needs to meet the relevant norms, such as the press does not meet a certain share of the adjustment parameter optimization sectional dimension reference section is full of stress optimization method, and then repeat the second, three-step cycle optimization, until the points gantry steel structure to meet the requirements of all components of the deformation is demand.
     Realize full stress optimized cross-sectional dimension, the cycles are more generally more than 10 times before convergence is achieved mast stiffness to meet the needs of cross-sectional dimension distortion optimization less frequently, usually 1-3 times to meet the demand.

Copyright:佛山市勝邦鋼結(jié)構(gòu)有限公司 Foshan Shengbang Steel Structure Co., Ltd. Record Number:粵ICP備13078463號(hào)
国产美女成年人网站| 国产亚洲日韩欧美人妻加勒比| 男人天堂东京热av| 小香蕉人人操| 国产伦理草草影院| 青青草99热国产精品| 日本一区二区三区wwww| 欧美黑人变态另类| www. 一区二区| 射你骚逼亚洲国产精品| www.超碰porn| 国产香蕉九九| 张开腿从后面进入视频| 天天干天天曰天天射| 欧洲 亚洲 国产不卡| 欧美一级做一级爱| 午夜极品福利视频| 亚洲国产一区蜜臀| 久久3p人妻av| 国产美女黄网站下载| 日本久久精品中文字幕| 天堂亚洲A区| 日韩伦理亚洲在线| 熟妇色欲潮喷一区二区三区| 欧美b日日日| 亚洲一区小说| 久久国产真实| av伦理网站在线观看网站| 大香蕉天天更新视频| 99黄色一级视频| 一卡二卡三卡乱码日本| 成人久久久小片| 曰曰a爽| 你懂的一区二区三区| 国内外在线播放你懂得| 中文无码熟妇人妻| 91国产夜夜夜| 精品久久久久久久久蜜臀| 日B网站视频播放| 非洲大鸡巴毛片| 欧美特黄在线|